1,881 research outputs found

    Transverse excitations of ultracold matter waves upon propagation past abrupt waveguide changes

    Get PDF
    The propagation of ultracold atomic gases through abruptly changing waveguide potentials is examined in the limit of non-interacting atoms. Time-independent scattering calculations of microstructured waveguides with discontinuous changes in the transverse harmonic binding potentials are used to mimic waveguide perturbations and imperfections. Three basic configurations are examined: step-like, barrier-like and well-like with waves incident in the ground mode. At low energies, the spectra rapidly depart from single-moded, with significant transmission and reflection of excited modes. The high-energy limit sees 100 percent transmission, with the distribution of the transmitted modes determined simply by the overlap of the mode wave functions and interference.Comment: 20 pages, 7 figures, under review PR

    Developing evidence-based practice: the role of case-based research

    Get PDF
    How can practitioners engage in evidence-based practice when the evidence for effectiveness of psychological treatments comes from randomized controlled trials using patient populations different from those encountered in everyday settings and treatment manuals that seem oversimplified and inflexible? The authors argue that important evidence about best practice comes from case-based research, which builds knowledge in a clinically useful manner and complements what is achieved by multivariate research methods. A multidimensional model of the research process is provided that includes clinical practice and case-based research as significant contributors. The authors summarize the principles of case-based research and provide examples of recent technical advances. Finally, the authors suggest ways in which practitioners can apply the case-based approach in researching and publishing their own cases, perhaps in collaboration with university-based researchers

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5∘^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    Signature of the Simplicial Supermetric

    Get PDF
    We investigate the signature of the Lund-Regge metric on spaces of simplicial three-geometries which are important in some formulations of quantum gravity. Tetrahedra can be joined together to make a three-dimensional piecewise linear manifold. A metric on this manifold is specified by assigning a flat metric to the interior of the tetrahedra and values to their squared edge-lengths. The subset of the space of squared edge-lengths obeying triangle and analogous inequalities is simplicial configuration space. We derive the Lund-Regge metric on simplicial configuration space and show how it provides the shortest distance between simplicial three-geometries among all choices of gauge inside the simplices for defining this metric (Regge gauge freedom). We show analytically that there is always at least one physical timelike direction in simplicial configuration space and provide a lower bound on the number of spacelike directions. We show that in the neighborhood of points in this space corresponding to flat metrics there are spacelike directions corresponding to gauge freedom in assigning the edge-lengths. We evaluate the signature numerically for the simplicial configuration spaces based on some simple triangulations of the three-sphere (S^3) and three-torus (T^3). For the surface of a four-simplex triangulation of S^3 we find one timelike direction and all the rest spacelike over all of the simplicial configuration space. For the triangulation of T^3 around flat space we find degeneracies in the simplicial supermetric as well as a few gauge modes corresponding to a positive eigenvalue. Moreover, we have determined that some of the negative eigenvalues are physical, i.e. the corresponding eigenvectors are not generators of diffeomorphisms. We compare our results with the known properties of continuum superspace.Comment: 24 pages, RevTeX, 4 eps Figures. Submitted to Classical Quantum Gravit

    Frozen quantum coherence

    Get PDF
    We analyze under which dynamical conditions the coherence of an open quantum system is totally unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coherence monotones are left invariant during the entire evolution. This finding also provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain analytical results for distance-based measures of coherence in two-qubit states with maximally mixed marginals

    Quantitative complementarity in two-path interferometry

    Full text link
    The quantitative formulation of Bohr's complementarity proposed by Greenberger and Yasin is applied to some physical situations for which analytical expressions are available. This includes a variety of conventional double-slit experiments, but also particle oscillations, as in the case of the neutral-kaon system, and Mott scattering of identical nuclei. For all these cases, a unified description can be achieved including a new parameter, ν\nu, which quantifies the effective number of fringes one can observe in each specific interferometric set-up.Comment: 11 RevTex pages, 5 figure

    The Periodic Standing-Wave Approximation: Overview and Three Dimensional Scalar Models

    Get PDF
    The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the ``mixed'' partial differential equations to be solved, (ii) the meaning of standing waves in the method, (iii) computational difficulties, and (iv) the ``effective linearity'' that ultimately justifies the approximation. The method is applied to three dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.Comment: 13 pages RevTeX, 5 figures. New version. A revised form of the nonlinearity produces better result
    • …
    corecore